
� Joint analysis of correlated phenotypes can provide greater power to

map underlying quantitative loci (QTLs) with pleiotropic effects than

univariate analysis of the individual phenotypes [1].

� Various methods to perform multivariate association tests in

population- or family-based data have been proposed.

- In GWAS of unrelated individuals, bivariate association analysis based

on a Seemingly Unrelated Regression (SUR) model [2] provides, on

average, greater power than univariate analysis [3].

- In data from extended pedigrees, the estimation of the covariance

structure makes it difficult to fit bivariate models. An intuitive approach

to detect a QTL with pleiotropic effects is to fitting a univariate model

on the first principal component (PC1) obtained from principal

component analysis (PCA) of the phenotypes of interest.

� Here, we compare different approaches to detect a QTL with pleiotropic

effects using the example of two highly correlated cardiac phenotypes

measured in an extended-pedigree study.
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Background

Study sample. In the framework of the MICROS study, that was

carried out in 3 isolated villages in South Tyrol (Italian Alps) [4],

we consider here 942 individuals with available

electrocardiogram (ECG) data. All samples were genotyped with

Illumina HumanHap300 SNP microarrays: 306,662 SNPs were

available for analysis after quality control (SNP call rate = 98%,

individual call rate = 98%, Hardy-Weinberg equilibrium test p-

value > 1E-06, minor allele frequency ≥1%).

Phenotypes. The QT and RR intervals, measured by the ECG.

Individuals were excluded according to atrial fibrillation and QRS

interval >120 ms. QT and RR were standardized before analysis

(QTs and RRs). From QTs and RRs, PC1 was obtained by means of

PCA: PC1= -0.71xQTs-0.71xRRs and explained 90% of the total

variance.

Association analysis.

- Univariate GWAS on QTs, RRs, and PC1 were performed using

the mmscore function in GenABEL [5] and estimating the

covariance matrix from the genomic kinship matrix. For

biological interpretation we also fit a GWAS on QTs adjusted

by RRs (QTs/RRs).

- Bivariate GWAS on QTs and RRs was performed using a SUR

model with the Systemfit package, using previously described

methods [3], and considering the samples as unrelated.

- All models were adjusted for age, sex, BMI and study location

and in all models an additive genetic effect was assumed. The

Bonferroni corrected threshold for statistical significance was

3.26x10-6.
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Table 3. Top 11 most associated loci from SUR-based bivariate GWAS: comparison with results from univariate association analyses of QTs, RRs, PC1, and QTs/RRs. 

Materials and Methods
We report the top 11 bivariate associated loci in Table 3. Given the lack of a method

to account for the pedigree structure in the bivariate SUR analysis, we provide the

ranks of the p-value statistics to allow a fair comparison between methods. In

summary:

� Rs1, 2, and 3 were strongly associated also with QTs, RRs and PC1, but not with

QTs/RRs. A similar behavior was observed for Rs4 but with a weaker effect on

RRs.

�Simultaneous, strong association of bivariate and both univariate analyses

(QTs and RRs) may suggest that an underlying QTL acts on both traits, reflecting a

QTL with pleiotropic effects.

� Rs5 was strongly associated also with QTs, PC1, and QTs/RRs but not with RRs.

� Suggestion for an underlying QTL acting uniquely on QTs.

� Rs6, 7 and 8 were also associated with QTs/RRs but not with QTs, RRs or PC1.

� Rs9, 10 and 11: the association signals were much stronger in the bivariate than

in univariate analyses. However, since we could not correct the bivariate analysis

p-values for the population structure, the p-value comparison across methods

could have limited value.
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Results

Our bivariate genome-wide association scan using the SUR model appears to be

a valuable and powerful screening approach to identify loci with a potential effect on

both the traits involved in the analysis.

In fact, four of top 11 loci identified had relevant association statistics also when

the individual traits were analyzed separately. The analysis of the first principal

component further supported these findings.

In other cases, the signals in the bivariate analysis were driven by one of the two

traits, as it was the case for the rs5 located 25 kb upstream of NOS1AP, that has been

previously identified for the QT interval [6].

Limitation of the SUR method is that the hypothesis testing framework allows for

multiple alternatives, i.e.: the null hypothesis can be rejected when the locus is

associated with at least one of the two traits. For this reason, the method needs to be

coupled with univariate approaches to allow a correct interpretation. Methodological

developments to include correction for individuals’ relatedness are also ground for

further research.

Discussion/Conclusions

1SNP
2A1/A2 

(Ref. All.)
3MAF

SUR
Univariate analysis

5Ranks
QTs RRs PC1 QTs/RRs

P β (SD) 4P β (SD) 4P β (SD) 4P β (SD) 4P SUR QTs RRs PC1 QTs/RRs

Rs1 A/G (G) 0.50 2.4E-07 -0.21 (0.04) 3.1E-06 -0.23 (0.04) 3.5E-07 0.31 (0.06) 3.0E-07 -0.02 (0.03) 0.54 4 1 1 1 166391
Rs2 A/G (A) 0.38 9.3E-07 0.21 (0.05) 8.5E-06 0.19 (0.05) 4.9E-05 -0.29 (0.06) 7.2E-06 0.05 (0.03) 0.08 8 5 19 5 24229
Rs3 A/C (A) 0.09 3.9E-07 0.44 (0.10) 9.7E-06 0.47 (0.10) 1.2E-06 -0.65 (0.13) 1.0E-06 0.04 (0.06) 0.53 5 7 2 2 162661
Rs4 T/C (T) 0.21 2.8E-06 0.29 (0.06) 4.2E-06 0.22 (0.06) 3.8E-04 -0.36 (0.08) 1.9E-05 0.10 (0.04) 4.7E-03 14 2 124 9 1472

Rs5 (rs2880058, 
NOS1AP) G/A (G) 0.32 6.1E-08 0.22 (0.05) 5.9E-06 0.11 (0.05) 2.6E-02 -0.23 (0.07) 3.9E-04 0.13 (0.03) 3.7E-06 1 3 7951 128 4

Rs6 T/C (T) 0.46 8.0E-08 0.01 (0.05) 0.80 0.16 (0.05) 9.6E-04 -0.12 (0.07) 0.06 -0.12 (0.03) 1.4E-05 2 245447 326 19738 8
Rs7 A/G (A) 0.45 1.6E-07 -0.11 (0.05) 2.4E-02 0.02 (0.05) 0.67 0.06 (0.06) 0.34 -0.12 (0.03) 1.2E-05 3 7392 206467 103694 6
Rs8 A/G (A) 0.25 7.4E-07 -0.08 (0.05) 0.13 0.08 (0.05) 0.13 0.00 (0.07) 0.96 -0.15 (0.03) 1.3E-06 6 40126 40549 295842 2
Rs9 A/G (A) 0.31 1.3E-06 -0.01 (0.05) 0.79 -0.15 (0.05) 4.2E-03 0.11 (0.07) 0.10 0.11 (0.03) 3.7E-04 11 242977 1313 31506 119

Rs10 C/T (C) 0.32 1.9E-06 0.08 (0.05) 0.11 0.17 (0.05) 4.6E-04 -0.18 (0.07) 7.4E-03 -0.06 (0.03) 3.5E-02 12 35453 156 2324 10755
Rs11 T/G (T) 0.13 8.1E-07 0.05 (0.06) 0.45 -0.10 (0.06) 0.09 0.04 (0.08) 0.60 0.12 (0.03) 2.8E-04 7 137913 27072 184750 97

Genome-wide significant SNPs after a Bonferroni correction are shown in bold; 1SNP with the lowest bivariate association P-value is reported. 2A1 is the minor allele; 3Minor allele 
frequency; 4Unadjusted univariate P-values; 5Ranks of the identified SNP
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Figure 1. QQ plot from bivariate and univariate analysis of traits

λQTs/RRs=1.00

λPC1=0.99

Mean (QTs&RRs)=2.49±2.51

λ=2.47

λQTs=0.99

λRRs=0.99

The SUR model for bivariate association analysis


